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A problem of integer quadratic progranting is considered An integer linear 
programing problem was treated, for example, i~ [I to 3]~ First, we shall 
consider an auxiliary noninteger problem (the continuous problem) and then 
we shall show how on the basis of the known solution of the noninteger prob- 
lem one can find the integer (whole number) solution. As an exa~le, we 
give the problem of selecting the optimum order of external actions on a • 
linear system. 

I. P@I~mAII$~ Of ~@ ~o~lem. We are given the function 

F ( X )  = X * N X  + X*B + c ( l . l )  

where X = (xl,..., x a) is an n-dimenslonal vector; N is a real symmetric 
positlve definite square n-order matrix, B an n-dimenslonal vector, 0 a 
real number; the asterisk * indicates transposition. 

Let n real numbers 7,,..., Y. be given. Out of these n numbers one 
can construct n! different n-dimensional vectors of which each one contains 
as components all the numbers Y1 .... , Y- • We shall denote this set of vec- 
tors by n • One can easily think of al~ the points of the set ~ as lying 
in a plane perpendicular to the vector (i, I, ..., I) and passing through the 
point (a, a ..... s), where a = (Tt + .-. + 7~)/n • 

It is required to find a point Z~, such that 

F (Z) := ra in  F (X), X ~ ~ (1.2) 

Clearly, this problem can be worked by taking all permutations, but for 
large n this is practically impossible. Let us introduce into our consi- 
deration the set L which is constructed from the set 0 in the following 
way: X ~ A, If 

X : ~ X ~  ~ • • • - i  % X s ;  X i ~  ~ ,  ~ i ~ O ,  i =-= 1 . . . . .  +; a ~ @ . .  • ~ ~s == 1 

s ~ n] (1.3) 

It is obvious that L is a convex closed, bounded set (a polyhedron) in 
an n-dimensional Euclidean space: Q CL 

First, we shall solve the auxiliary problem. We must find a point Y~L, 
such that 

F (Y) =: n f in  F (X), X ~ L (1.4) 
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2. 8olutlon of ~he •%txili~y pPoblem. We shall find the minimum of the 
function (i.i) on the set L Let us denote by 0(X) the gradient of the 
function F(X) 

G ( X )  : ~-z~ . . . . .  Ox '~ : 2NX-~- B 

We select an arbitrary X I ~ L. Evaluating the gradient of the function 
F(X) at the point X I, we get G i ~ G (XI) ---- 2NX lq- B. Let us find a point 
Z I ~L, such that 

ZI*G I = rain X'G1,  X @ L (2.1) 

The components of the vector Z~ have to be found in the following way. 
Let Q =-(g, 1,..., gL~), and let the largest component of the vector 0~ be 
~, k. Then one must take for m~ ~ the smallest one of the numbers 7~, ...,7~ 
ext, we look for the largest one of the numbers ~ (~ ~ k) and for the 

smallest one of the remainder in the sequence y,,..., F~, and so on, until 
we find all components of the vector Z, It is easy to see that ZI~ , 
i.e. the solution of the linear problem (2.1) will be an integer solution. 
Let us take now the linear combination 

X 1 (a )  = Gc.X 1 -L- (I  -- Gt,) Z l ,  G¢ ~ [0,  ] ]  

We f i n d  an a = c z ,  E [ 0 ,  t],  such t h a t  F ( X l ( a l ) ) = m i n F  (X~(~)), c t ~ [ 0 ,  t]. 
It is obvious that 

- -  (Xl - -  Zl)* [2NZl .+ B] sl (2.2) 
a l =  2 (X  1 - Z 0 * N ( X I - Z 0  = s--~- 

If ~# Z l, then the denominator s~> 0 in (2.2) because of the positive 
definiteness of the matrix N ; if, however, X~- Z~ then X~ is a solution 
of the stated problem. 

If the a, defined by (2.2) is negative, then it is easily seen that 
F(Z l) < F(X l). In this case, we assume that X m- Z l . 

Suppose that the numerator s1~0 in (2.2). Since 

s 2 = s 1 + (X~ - -  Z~)* [2NX~ ~ B], (X~ ~ Z,)* [2NX~ + B] ~ 0 

(the last statement is implied by (2.1)) then s 2 ~ sl and 0 ~ 0 5 ~ <  t. In this 
case we set 

X 2 = c(IX l ~- (I -- ~i) Zl 

It is obvious that Y (X~ < Y (X,), X~L. 

We proceed in an analogous way. In this manner we obtain the sequences 

X,, X2 ..... Xs ~L; Z,, Z~ .... ; Z, ~ ~ (2.3) 

~cause of the choice of the Z, we have (2.4) 

q~s -~ (Zs ~ Xs)* G~ ~ 0, f (X,) >~ f (Xi) ~ . . . .  l im F (Xs) = d, F (Xa) > / d  

Here, ~ is a finite number because L is a bounded set. 

Let Y be an arbitrary limit of the sequance X,, )[2, • •., i.e. there 
exists a sequence X~,, Xk, .... such that Xhs --~ y ~ L. 

Then one can show, Just as it was done in [~], that 

F ( Y )  = m i n F ( X ) , . X  ~ L 

From the results of [4] it follows that 

min  [(X - -  Y)* G] ~ 0, X E L ,  G ~ G (Y) = 2NY -~- B (2.5) 

~ . ~  i ~ n d ~ r 4  an  ~ . n t q ~  ~ o l u t ~ o n  on ¢h# b u £ ~  o f  • ~ o l u t i o n  o f  t l ~  ~ c ~ . -  
1 ~obl@~, We assume that a solution of the "continuous" problem is 

~ iven, i.e. one knows a point Y ~Z such that F (Y) -- rain F (X), X ~L 
Suoh a point can be found by the method described above). 
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~n order to find a solution of the integer problem, i.e. to flnd a point 
Z ~ ~, which yields a minimum of the function (I.I) on the set 0 , we can 
use the following arguments: 

I. Let us represent the function F(X) in the form 

F ( X )  == F ( Y ) +  (X - -  Y)* [ 2 N Y  + B] + (X - -  Y)* N (X - -  Y) (3.1) 

Since the matrix • is positive definite, we have 

F (X) >~ F (Y) + (X - -  Y)* G, G = 2 2 V Y +  B 

Suppose that we know the algorithm for orderln~ the points o f  the set 
relative to the vector a , i.e. we know a method for constructlnE the polnta 

Xt , ,  X12 . . . . .  Xtn  , ,  X , t  . . . . .  X~]o~ . . . .  (3.2) 

such that 
X i j ~  ( i= :  1 , 2 , . . . ;  i =  1 ,2  . . . . .  Pi) 

X u *  G : Xt2* G . . . .  -~ X2p~ G ~ X~,l$G . . . .  ----- X~v~ G <" . . . (3.3) 

whereby, if ~,*Q - u • then ar~ vector X ~ ~, for which X~0 < ~ will 
appear in the s~quence (3.2) t 9 the left of X,. (it will be shown below 
how to construct the sequence (3.2) which has ~e property (3.3)). Then 

( X , t "  Y ) * G  . . . .  = ( X l p ~ - - Y ) * G < . . .  

Since the point : yields a minimum for the function F(X) on the set L, 
it follows from (2.5) that (Xij- Y)* G >0. We form the set 

R m ~ (Xl t  ..... Xlp  l, X , l  . . . . .  X m l  . . . .  , Xmlom} 

Suppose that 

0m = mi , l  F (X) ,  X E Bin ,  ~m = ( X m l  - -  Y)* G 

If X E O and X ~ Rm, then (X-- Y)* G~m. Xt Is obvious that 6 m 
does not decrease, and that O m only decreases wlth an increase of m • For 
X ~ ~2, X ~Rm, we have 

F (X) ~> F (Y) + 6m (3.4) 

~f it should happen that 0 m ~ F (Y) + 6m, then 0 m = man F (X), X ~ ~. 

2. The method presented above for filling the integer solution from a 
known "continuous" solution, is not applicable if at the point Y the func- 
tion F(X) attains a minimum in the entire space (then 0 - (0, ...,0)), or 
if all coordinates of the vector (} are equal. In this case, if the matrix 
N Is strictly positive definite, one can construct a sequence of points 
(3.2) which has the following property: 

(Xtt  - -  Y)-~ - -  . . . = (Xl~,~ - -  y )2  < ( X , t  - -  Y) '  . . . . .  (X2;, ,  - -  Y)" < • • • 

Maklng use o f  the decomposttlon (3.1) and the strict positive def~teneas 
of the matrix N one can, in this case also, obtain an estimate analogous 
to (3."). 

~. ~le. Let us consider the problem of selecting the optimum order 
of action on the linear system 

X'  (t) --- .!  (t) X (t) + /3 (t) uj~i} (t) + f (t), X (0) = X o (4 . t )  

where g(*) is an unsown n-dlmensional vector function; a(,) is an 
n-dlmenslonal square matrix, (0 an m-dlmenslonal vector function of the 
external controlled action, ;(~) ~ known n-dlmenslonal vector ~unctlon of 
the external uncontrolled action, and m(~) an m × n matrix. 

The components of the vectors ~, (t), /(t) ~nd the ele~nta o~ ~he ~l'£- 
ces ~(~) and B(~) are assumed to~e)plece-wise contln~ous, g~ven ~ ~  
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l ' u n c t i o n a  o f  t i m e  on [ 0 ,  ~ J .  I t  I s  s u f f i c i e n t  t h a t  t h e y  be  m e a s u r a b l e .  The 
v e c t o r  f u n c t i o n  uj(i  ) (t) te d e t e r m i n e d  by  t h e  r e l a t i o n  

q 
u~(~) (t) -- ~ K ~  (t -- t~ o) (4.2) 

t = I  
where  ~ ( t  - 1 . . . . .  ~)  a r e  g i v e n  m - d i m e n s i o n a l  v e c t o r s  q: (t) ~. 0 when 
$ < 0 and $ > &~- , w h l l e  when t ~ [0, Ar] t h e  f u n c t i o n  q: (t) ~ ( t )  ; h e r e  
,($) is a continuous given function, A, is a ~nown quantity, 

t k-- tk_ x~- At, k= I, .... q--l; t0-- 0, tq_ I ~- T 

where A~ is a given quantity. 

In this manner, the vector function uj(i) (t) is deter~Lined as a discrete 
numerical function J($) . The total number of the function J($) with 

I is equal to ~! We shall denote the set 
$ " I,..., ~ ; ~ - 0, "''' ~W~ are given the functional of these functions by ~, . 

q--i 
J ( / ( i ) )  = ~ ,  X* ( t j , / ( i ) )  N X  (tj, I' (i)) (4.3) 

j=o 

Here X(t,, 3($)) Is a solution of the system (~.i) at the point tj when 
the control i (i) E QI, is selected; the matrix N is a positive definite 
square matrix of order n • It is required to find /0 (0 ~ ~i such that 

q--i 
S (jo (i)) = mi.n ~ X* (tj, i (i)) N X  (tj, (i)), i (i) E ~ (4.4) 

5=0 

By means of Cauchy's formula the solution of the system (~.I) may be writ- 
ten 

q 

X (t) = Y (t) Xo Jr  f y (t) y -1  (v) [B (T) ~ Kiq) (T - - t j ( t )  ) -~ f (g) ] dT 
0 i= l  

Here y(g) is the fundamental matrix of the homogeneous part of the sys- 
tem (4.1), and the problem of the minimization of the functional (~.~) can 
be reduced to the following one. 

We are given the function 

F (K) ~ K*NIK -~ K*b ~- c (4.5) 

where K - (~ ..... ~) is an m~-dimenslonal vector since ~ ($ - 1 ..... q)  
is an m-dlmensional vector; N t is a positive definite qth order nuatrix; 
i~ a~ m-dlmensional vector, o a real number. Besides that, we are given 
~m-dlmenslonal vectors ~:, ..., ¥~ from which one can construct ~! differ- 
ent mq-dimenslonal vectors which~orm the set fl . It is necessary to find 
y ~ ~ such that 

F(Y) = minF(K), K~ ~ (4.6) 

This problem is solved by the method presented in Sections 1 and 2, but 
the finding of the solution of the linear problem in this case is reduced to 
solving the "problem of specifications". If only one co~onent of the vec- 
tors y~ (~ - i,..., ~) in (~.2) depends on the number t of the reaction, 
then the problem coincides exactly with the one treated in Section I. 

£pp~g. Let us consider a set ~ ordered relative to the vector @. 
Below, we give an algorithm for the construction of the sequence (3.2) which 
has the property (3.3). For simpllcity's sake, we assume that the coordi- 
nates of the vector ~ , (g~, ..., g, ) are all distinct and that gx<~<...<g, 
By the hypothesis made in Section I, there are no equal numbers among 7t,... 

I t  l s  o b v i o u s  t h a t  one must  t a k e  f o r  ~ t he  v e c t o r  ~ t  " (~t~ . . . . .  xt~ ) 
whose coordinates are the numbers Yt arranged in decreaslng order. 

Suppose we have constructed the beg]~ning of the sequence (3.2):~, ..., 
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~_~. In order to find the next vector we proceed as follows: for each of 
e already constructed vectors ~, ..,, ~., we construct (n -- i) vectors 

which are obtained by a transposition of only two adjacent coordinates of 
this vector; from the set ~_ ~ of vectors so obtained we select a vector 

such t h a t  

X,~*G : rain X 'G,  X ~ D k _  r X ==/= X~ ( i  = ~ . . . .  , k - -  ]) 

We shall show that this vector is the required one. Indeed, for each 
vector Z ~ ~, for which 

rain X*G ~ Z*G ~ max X'G,  X ~ 

there exist vectors Z, and |= obtained from | by a transposition of only 
two a d j a c e n t  c o o r d i n a t e s  and having  the  p r o p e r t y  t h a t  ZI*G ~ Z*G ~ Z2*G. 

But then if ~ is the next vector after ~-i in the sequence (3.2), 
then there exists a vector ~: obtained from ~ by a transposition of only 
two adjacent coordinates for which .~l *a < ~*a and, since ~ is the near. 
est vector to ~-L in the sequence ~3.1), the vector ~, must occur among 
the vectors ~ ,... ~-l- Consequently this means that~he point ~ is in 
the set Dk-1 • 
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